Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mathematical modeling of monolignol biosynthesis in Populus xylem.

Identifieur interne : 003195 ( Main/Exploration ); précédent : 003194; suivant : 003196

Mathematical modeling of monolignol biosynthesis in Populus xylem.

Auteurs : Yun Lee [États-Unis] ; Eberhard O. Voit

Source :

RBID : pubmed:20816867

Descripteurs français

English descriptors

Abstract

Recalcitrance of lignocellulosic biomass to sugar release is a central issue in the production of biofuel as an economically viable energy source. Among all contributing factors, variations in lignin content and its syringyl-guaiacyl monomer composition have been directly linked with the yield of fermentable sugars. While recent advances in genomics and metabolite profiling have significantly broadened our understanding of lignin biosynthesis, its regulation at the pathway level is yet poorly understood. During the past decade, computational and mathematical methods of systems biology have become effective tools for deciphering the structure and regulation of complex metabolic networks. As increasing amounts of data from various organizational levels are being published, the application of these methods to studying lignin biosynthesis appears to be very beneficial for the future development of genetically engineered crops with reduced recalcitrance. Here, we use techniques from flux balance analysis and nonlinear dynamic modeling to construct a mathematical model of monolignol biosynthesis in Populus xylem. Various types of experimental data from the literature are used to identify the statistically most significant parameters and to estimate their values through an ensemble approach. The thus generated ensemble of models yields results that are quantitatively consistent with several transgenic experiments, including two experiments not used in the model construction. Additional model results not only reveal probable substrate saturation at steps leading to the synthesis of sinapyl alcohol, but also suggest that the ratio of syringyl to guaiacyl monomers might not be affected by genetic modulations prior to the reactions involving coniferaldehyde. This latter model prediction is directly supported by data from transgenic experiments. Finally, we demonstrate the applicability of the model in metabolic engineering, where the pathway is to be optimized toward a higher yield of xylose through modification of the relative amounts of the two major monolignols. The results generated by our preliminary model of in vivo lignin biosynthesis are encouraging and demonstrate that mathematical modeling is poised to become an effective and predictive complement to traditional biotechnological and transgenic approaches, not just in microorganisms but also in plants.

DOI: 10.1016/j.mbs.2010.08.009
PubMed: 20816867


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mathematical modeling of monolignol biosynthesis in Populus xylem.</title>
<author>
<name sortKey="Lee, Yun" sort="Lee, Yun" uniqKey="Lee Y" first="Yun" last="Lee">Yun Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Biosystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Biosystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Voit, Eberhard O" sort="Voit, Eberhard O" uniqKey="Voit E" first="Eberhard O" last="Voit">Eberhard O. Voit</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20816867</idno>
<idno type="pmid">20816867</idno>
<idno type="doi">10.1016/j.mbs.2010.08.009</idno>
<idno type="wicri:Area/Main/Corpus">003073</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003073</idno>
<idno type="wicri:Area/Main/Curation">003073</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003073</idno>
<idno type="wicri:Area/Main/Exploration">003073</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mathematical modeling of monolignol biosynthesis in Populus xylem.</title>
<author>
<name sortKey="Lee, Yun" sort="Lee, Yun" uniqKey="Lee Y" first="Yun" last="Lee">Yun Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Integrative Biosystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Integrative Biosystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Voit, Eberhard O" sort="Voit, Eberhard O" uniqKey="Voit E" first="Eberhard O" last="Voit">Eberhard O. Voit</name>
</author>
</analytic>
<series>
<title level="j">Mathematical biosciences</title>
<idno type="eISSN">1879-3134</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Biocatalysis (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Enzymes (genetics)</term>
<term>Enzymes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Metabolic Networks and Pathways (physiology)</term>
<term>Models, Biological (MeSH)</term>
<term>Phenols (metabolism)</term>
<term>Phenylpropionates (metabolism)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Propionates (metabolism)</term>
<term>Systems Theory (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Biocatalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Enzymes (génétique)</term>
<term>Enzymes (métabolisme)</term>
<term>Lignine (biosynthèse)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Phénols (métabolisme)</term>
<term>Phénylpropionates (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Propionates (métabolisme)</term>
<term>Simulation numérique (MeSH)</term>
<term>Théorie des systèmes (MeSH)</term>
<term>Voies et réseaux métaboliques (physiologie)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Enzymes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Enzymes</term>
<term>Phenols</term>
<term>Phenylpropionates</term>
<term>Propionates</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Enzymes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Enzymes</term>
<term>Phénols</term>
<term>Phénylpropionates</term>
<term>Populus</term>
<term>Propionates</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Metabolic Networks and Pathways</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Biocatalysis</term>
<term>Computer Simulation</term>
<term>Kinetics</term>
<term>Models, Biological</term>
<term>Systems Theory</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Biocatalyse</term>
<term>Cinétique</term>
<term>Modèles biologiques</term>
<term>Simulation numérique</term>
<term>Théorie des systèmes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recalcitrance of lignocellulosic biomass to sugar release is a central issue in the production of biofuel as an economically viable energy source. Among all contributing factors, variations in lignin content and its syringyl-guaiacyl monomer composition have been directly linked with the yield of fermentable sugars. While recent advances in genomics and metabolite profiling have significantly broadened our understanding of lignin biosynthesis, its regulation at the pathway level is yet poorly understood. During the past decade, computational and mathematical methods of systems biology have become effective tools for deciphering the structure and regulation of complex metabolic networks. As increasing amounts of data from various organizational levels are being published, the application of these methods to studying lignin biosynthesis appears to be very beneficial for the future development of genetically engineered crops with reduced recalcitrance. Here, we use techniques from flux balance analysis and nonlinear dynamic modeling to construct a mathematical model of monolignol biosynthesis in Populus xylem. Various types of experimental data from the literature are used to identify the statistically most significant parameters and to estimate their values through an ensemble approach. The thus generated ensemble of models yields results that are quantitatively consistent with several transgenic experiments, including two experiments not used in the model construction. Additional model results not only reveal probable substrate saturation at steps leading to the synthesis of sinapyl alcohol, but also suggest that the ratio of syringyl to guaiacyl monomers might not be affected by genetic modulations prior to the reactions involving coniferaldehyde. This latter model prediction is directly supported by data from transgenic experiments. Finally, we demonstrate the applicability of the model in metabolic engineering, where the pathway is to be optimized toward a higher yield of xylose through modification of the relative amounts of the two major monolignols. The results generated by our preliminary model of in vivo lignin biosynthesis are encouraging and demonstrate that mathematical modeling is poised to become an effective and predictive complement to traditional biotechnological and transgenic approaches, not just in microorganisms but also in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20816867</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-3134</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>228</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Mathematical biosciences</Title>
<ISOAbbreviation>Math Biosci</ISOAbbreviation>
</Journal>
<ArticleTitle>Mathematical modeling of monolignol biosynthesis in Populus xylem.</ArticleTitle>
<Pagination>
<MedlinePgn>78-89</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mbs.2010.08.009</ELocationID>
<Abstract>
<AbstractText>Recalcitrance of lignocellulosic biomass to sugar release is a central issue in the production of biofuel as an economically viable energy source. Among all contributing factors, variations in lignin content and its syringyl-guaiacyl monomer composition have been directly linked with the yield of fermentable sugars. While recent advances in genomics and metabolite profiling have significantly broadened our understanding of lignin biosynthesis, its regulation at the pathway level is yet poorly understood. During the past decade, computational and mathematical methods of systems biology have become effective tools for deciphering the structure and regulation of complex metabolic networks. As increasing amounts of data from various organizational levels are being published, the application of these methods to studying lignin biosynthesis appears to be very beneficial for the future development of genetically engineered crops with reduced recalcitrance. Here, we use techniques from flux balance analysis and nonlinear dynamic modeling to construct a mathematical model of monolignol biosynthesis in Populus xylem. Various types of experimental data from the literature are used to identify the statistically most significant parameters and to estimate their values through an ensemble approach. The thus generated ensemble of models yields results that are quantitatively consistent with several transgenic experiments, including two experiments not used in the model construction. Additional model results not only reveal probable substrate saturation at steps leading to the synthesis of sinapyl alcohol, but also suggest that the ratio of syringyl to guaiacyl monomers might not be affected by genetic modulations prior to the reactions involving coniferaldehyde. This latter model prediction is directly supported by data from transgenic experiments. Finally, we demonstrate the applicability of the model in metabolic engineering, where the pathway is to be optimized toward a higher yield of xylose through modification of the relative amounts of the two major monolignols. The results generated by our preliminary model of in vivo lignin biosynthesis are encouraging and demonstrate that mathematical modeling is poised to become an effective and predictive complement to traditional biotechnological and transgenic approaches, not just in microorganisms but also in plants.</AbstractText>
<CopyrightInformation>Copyright © 2010 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Yun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Integrative Biosystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Voit</LastName>
<ForeName>Eberhard O</ForeName>
<Initials>EO</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Math Biosci</MedlineTA>
<NlmUniqueID>0103146</NlmUniqueID>
<ISSNLinking>0025-5564</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010666">Phenylpropionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011422">Propionates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C434470">guaiacyl monolignol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C434469">syringyl monolignol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8O6NO04SMV</RegistryNumber>
<NameOfSubstance UI="C496130">sinapyl alcohol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E7SM92591P</RegistryNumber>
<NameOfSubstance UI="C010559">coniferyl alcohol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IBS9D1EU3J</RegistryNumber>
<NameOfSubstance UI="C495469">trans-3-(4'-hydroxyphenyl)-2-propenoic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010666" MajorTopicYN="N">Phenylpropionates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011422" MajorTopicYN="N">Propionates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013598" MajorTopicYN="N">Systems Theory</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>08</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20816867</ArticleId>
<ArticleId IdType="pii">S0025-5564(10)00141-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.mbs.2010.08.009</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Voit, Eberhard O" sort="Voit, Eberhard O" uniqKey="Voit E" first="Eberhard O" last="Voit">Eberhard O. Voit</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Lee, Yun" sort="Lee, Yun" uniqKey="Lee Y" first="Yun" last="Lee">Yun Lee</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003195 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003195 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20816867
   |texte=   Mathematical modeling of monolignol biosynthesis in Populus xylem.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20816867" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020